

Fairfax, VA · +1 (434) 254-9053 · bwei2@gmu.edu

Website:https://weibowen555.github.io/LinkedIn:https://www.linkedin.com/in/bowen-wei-9485a1192/

Research Interest

My research spans **trustworthy and interpretable AI** for large language models. I develop prototype-based, symbolic, and explanation-driven methods to make model behavior transparent, fair, and robust, enabling users to understand and trust AI decisions in high-stakes settings. In parallel, I study **RL** and **post-training** techniques that distill multi-agent reasoning into single, verifiable agents—improving reasoning quality, evidence attribution, and causal grounding. Together, these directions aim to advance AI systems that are both **interpretable in their inner logic** and **competent in autonomous, evidence-based reasoning**.

Education

- Ph.D. in Computer Science, George Mason University, Fairfax, VA (Expected 2028)
- · M.S. in Computer Science, University of Virginia (2021-2023)
- B.S. in Computer Science, Xidian University (2016–2021)

Publications

· AAAI 2026 Oral Bowen Wei, Ziwei Zhu.

Making Sense of LLM Decisions: A Prototype-based Framework for Explainable Classification. Acceptance: $4,176 / 23,680 \approx 17.6\%$.

• ACL 2025 Main Bowen Wei, Ziwei Zhu.

ProtoLens: Advancing Prototype Learning for Fine-Grained Interpretability in Text Classification. Acceptance: 1,699 / 8,360 ≈ 20.3%.

- NEURIPS 2025 LAW WORKSHOP Bowen Wei, Yuan Shen Tay, Howard Liu, Jinhao Pan, Kun Luo, Ziwei Zhu, Chris Jordan. CORTEX: Collaborative LLM Agents for High-Stakes Alert Triage.
- WACV 2026 Mehrdad Fazli, Bowen Wei, Ziwei Zhu.

 CAAC: Confidence-Aware Attention Calibration to Reduce Hallucinations in Large Vision-Language Models.
- ICLR 2026 (UNDER REVIEW) Bowen Wei, Ziwei Zhu.

 Neural Symbolic Logical Rule Learner for Interpretable Learning.
- In Submission Chahat Raj, Bowen Wei, Ziwei Zhu. VIGNETTE: Socially Grounded Bias Evaluation for Vision-Language Models.
- M.Sc. THESIS Bowen Wei, Yiling Jia, Hongning Wang. An Empirical Study of Neural Contextual Bandit Algorithms.

Current Projects

Evidence-Attribution Reinforcement Learning (EA-RL) - Target: ICML 2026

Oct 2025 - Present

- · Leading a project to design multi-agent LLM distillation with explicit evidence attribution and reliance
- · Proposing a new paradigm where models are rewarded not just for being correct, but for using and depending on the right evidence
- $\boldsymbol{\cdot}$ Building on the CoA framework by introducing $\boldsymbol{evidence}\boldsymbol{-}\boldsymbol{aware}$ $\boldsymbol{post-training}$
- · Aiming to develop faithful, verifiable single-agent reasoning systems that can explain both what and why
- · Designed to bridge outcome accuracy and causal faithfulness, establishing a new standard for trustworthy reasoning in LLMs

NeuroSymbolic Autoencoder for Interpretable Recommendation - Target: SIGIR 2026

Oct 2025 - Present

- Developing a NeuroSymbolic Autoencoder that integrates neural representation learning with symbolic reasoning for transparent RecSys
- $\cdot \ \mathsf{Employing} \ \mathsf{the} \ \mathsf{Rule} \ \mathsf{Network} \ \mathsf{as} \ \mathsf{both} \ \mathsf{encoder} \ \mathsf{and} \ \mathsf{decoder} \ \mathsf{to} \ \mathsf{learn} \ \mathsf{logical} \ \mathsf{rule-based} \ \mathsf{latent} \ \mathsf{spaces}$
- Aiming to create interpretable, rule-grounded recommendation systems that unify neuro-symbolic learning and explainable personalization

Internship

Al Agents Developer - Fluency Security

Jun 2025 - Aug 2025

- $\boldsymbol{\cdot} \text{ Proposed and built } \textbf{CORTEX}, \text{a role-specialized multi-agent LLM architecture for SOC alert triage}$
- · Work accepted to the NeurIPS 2025 LAW Workshop as CORTEX: Collaborative LLM Agents for High-Stakes Alert Triage

GenAl Engineer - GoEngage

Jun 2025 - Aug 2025

- · Implemented a semantic search engine that improved retrieval accuracy over keyword matching
- · Developed an agentic chatbot that autonomously queries backend APIs and generates analytical reports for non-technical users

Professional Service